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Abstract

In this coursework, we explore the use of different
training techniques for fitting a neural network on
the EMNIST dataset of handwritten digits. We
experiment with different numbers of hidden lay-
ers (two through five); different learning rules
(SGD, RMSProp, and Adam); different learn-
ing rate schedules (constant and cosine anneal-
ing with and without restarts); and regularization
(L2 and weight decay). We conclude that the
Adam learning rule makes a three-hidden-layer
model reach a good fit faster than the baseline
and that L2 regularization reaches a better test
set accuracy than the baseline after 100 epochs
of training.

1. Introduction

In recent years, artificial intelligence systems have become
an increasingly important part of software and workflows
across many industries. Such systems work by analyzing
many example data points to attempt to “learn” fundamental
properties of the data, which they can later apply to make
predictions about previously unseen data.

A common approach for leaning such properties for high-
dimensional inputs is to model them using a deep neural
network. This involves taking linear combinations of a
vector of input data (e.g. an image), passing it through a
non-linear function, and repeating this process for several
“layers” that each take the previous layer’s output as input.
The final layer produces an output (e.g. probabilities for
different class labels for the image). Each layer has its
own set of weights by which it multiplies its input vector.
The learning process involves optimizing these weights to
produce the correct outputs for the given inputs.

A basic process to optimize the weights in a deep neural net-
work is to use gradient descent, a technique that repeatedly
calculates the gradient of the error of the current weights’
output (e.g. the difference between the correct and predicted
probabilities for image labels) and then slightly tweaks the
weights in the steepest direction that would decrease the er-
ror, propagating this change backwards through the model’s
layers.

During this process, there are many steps we can take to
improve our performance in terms of accuracy and speed.
First, it may not always be the best idea to follow the steep-
est descent directly, but rather keep track of our general mo-
mentum to avoid oscillations; these ideas are incorporated

in the RMS-Prop (Tieleman & Hinton, 2012) and Adam
(Kingma & Ba, 2014) learning algorithms. Second, we can
tweak by how much we change the weights on each train-
ing pass: we can adjust this learning rate to vary over time
using a cosine annealing learning schedule (Loshchilov &
Hutter, 2017). Third, to ensure we don’t overfit on training
data, we can apply L2 regularization, keeping weights rela-
tively small, or decay our weights over time (Loshchilov &
Hutter, 2017). In this report, we explore and compare all
these options.

The rest of this report is structured as follows: in Section 2,
we describe the dataset on which we experiment; in Section
3, we explain the baseline against which we compare the
algorithms; in Section 4, we explore and test the RMSProp
and Adam learning algorithms; in Section 5, we explore
and test cosine annealinig learning schedules; in Section 6,
we explore and test L2 regularization and weight decay on
the Adam learning rule; finally, in Section 7, we compare
all the models we’ve implemented.

2. The EMNIST Dataset

A common machine learning problem with many practical
applications is digitizing hand-written text, which is useful
for, for example, automating (snail) mail delivery. More
formally, (a part of) this problem is one of classification:
given a scanned input of a handwritten character, can we
classify which letter or digit it is?

Handwritten character classification is such a common prob-
lem that a standard dataset has emerged for it: the EMNIST
dataset, which is “a set of handwritten character digits de-
rived from the NIST Special Database 19 and converted to
a 28x28 pixel image format” (Cohen et al., 2017). With
26 upercase and lowercase letters and 10 digits, EMNIST
has 62 classes. We use a version of the dataset that merges
letters whose upper- and lowercase versions are hard to dis-
tinguish at a normalized scale (such as C, I and M), leaving
47 classes.

EMNIST has a total of 131,600 examples, which we split
into 100, 000 data points (76%) for training, 15, 800 (12%)
for validation, and 15, 800 (12%) for testing.

3. Baseline Systems

As a baseline, we experiment with Stochastic Gradient
Descent (SGD) at different learning rates in a network with
two to five hidden layers of 100 ReLU units each, trained
for 100 epochs.
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(a) Validation set comparison of baseline SGD with different learn-

ing rates across two to five hidden layers.
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(b) Test set comparison of baseline SGD at learning rate 0.01 and
different hidden layer counts.

Figure 1: Baseline SGD comparisons, trained for 100
epochs each.

The accuracy on the validation set of each of these 20
models is plotted in Figure 1(a). Clearly, learning rates
0.0001 (red) and 0.001 (green) underfit on each model,
never reaching more than approximately 40% and 60%
accuracy, respectively. Learning rates 0.1 (cyan) and 1.0
(magenta) find a good fit in just a few epochs, but behave
erratically afterwards—especially 1.0, which appears to
become unstable on higher hidden layer counts.

For each hidden layer count, the sweet spot appears to be a
learning rate of around 0.01. For two through five hidden
layers, the accuracy on the validation set at learning rate
0.01 after 100 epochs is 83.7%, 83.2%, 82.7%, and 81.7%,
respectively. This performance trends slightly downward
as the number of hidden layers increases, which could
be explained by the model being increasingly capable of
overfitting on the training data.

The accuracy on the test set for each layer count trained
at learning rate 0.01 is plotted in Figure 1(b); all models
perform quite similarly. Two hidden layers takes slightly
longer to find a good fit than the rest; three hidden layers
edges out four and five hidden layers, but not significantly.
Given the computational advantage of having fewer layers,
though, it makes sense to go with a three-hidden-layer SGD
model trained at a learning rate of 0.01 as baseline model.

4. Learning Algorithms: RMSProp & Adam

Two improvements over standard SGD are the RMSProp
(Tieleman & Hinton, 2012) and Adam (Kingma & Ba,

2014). In this section, we investigate each of them and
compare their performance to the baseline.

SGD, our baseline model, adjusts each weight w; on each
tth mini batch according to Equation 1, where d; is the error
gradient with respect to the weights and 7 is the learning
rate:

wi(t) = wi(t = 1) = ndi(t) ey

4.1. RMSProp

RMSProp differs mostly from gradient descent because
it keeps track of its momentum over time, which enables
it to keep moving in the general direction down the error
function while avoiding oscillations from using only the
steepest descent at the current point. To do this, RMSProp
adjusts the way weights are updated, incorporating a mov-
ing average of the squared gradient S; defined by Equation
2, where $,! is a hyperparameter for the decay that the
authors suggest to set around 0.9.

Si(t) = oS it = 1) + (1 = Bo)di(t)’ @

To update the weights, RMSProp replaces Equation 1 from
SGD with Equation 3, where € is a small smoothing factor
set to around 1078,

"4
NSO Ed,(t) 3
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4.2. Adam

Adam is an iteration of RMSProp to address an issue raised
by Hilton that momentum is not very effective. Instead of
updating the weights using the gradient directly as RM-
SProp does, Adam updates the weights using a momentum-
smoothed gradient M;, defined in Equation 4, where 3, is a
smoothing hyperparameter.

M;(1) = BiM;(r = 1) + (1 = B1)d;(1) “

To update the weights, Adam replaces Equation 1 from
SGD with Equation 5; the authors recommend setting 5, =
0.9, 8, = 0.999 and € = 1073,

wilt) = wilt = 1) = ——2

—M; 5
Sit)+e€ ® ©)

4.3. Experimentation

To determine the best hyperparameter settings for RMSProp
and Adam, we performed the following experiments. For
all experiments, we kept the hidden both the hidden layers
and smoothing factor € constant, respectively at three 100-
ReLU-unit hidden layers and at the recommended setting
of 1073,

For RMSProp, we varied the learning rate and 3, hyperpa-
rameters as follows:

e 3,:0.8,0.9, and 0.99
o Learning rate: 1073, 0.0001, 0.001, 0.01, and 0.1

"We label this hyperparameter 8, for consistency with the
code, even though we introduce it before Adam’s 3
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(a) RMSProp performs best on the validation set at 8, = 0.99 and
learning rate 0.0001 (right, green). Learning rates 0.01 and 0.1 are
too low to appear on the graph.
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(b) Adam performs best on the validation set at learning rate 0.0001
(green); 81 = 0.9 and B, = 0.9999 slightly beat other Bs settings.
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(c) At best validation set score settings, Adam reaches its peak
performance faster than SGD and the baseline.

Figure 2: Accuracy of RMSProp and Adam on validation
set (2(a) and 2(b)) and on test set (2(c)) with hyperparam-
eters set to those with best validation set accuracy; every-
thing trained for 100 epochs.

The accuracy of each of these 15 models on the validation
set is plotted in 2(a). From these graphs, it is clear that
B2 = 0.99 (the recommended setting) at learning rate 0.0001
performs best: it reaches both the highest validation score
of all hyperparameter settings (TODO) and produces the
smoothest curve.

For Adam, we varied the learning rate, 8, and 3, hyperpa-
rameters as follows:

e 31:0.85,0.9, and 0.95
e 3,: 0.99, 0.999, and 0.999
e Learning rate: 107>, 0.0001, 0.001, and 0.01

The accuracy of each of these 36 models on the validation
set is plotted in 2(b). From these graphs, we can see that
B1 = 0.9, B> = 0.9999, and learning rate 0.0001 perform

best, although many settings of appear similar’. Although
some other settings produce quite similar results, it seems
best to stick with the recommended settings for generaliza-
tion.

After determining these best settings for RMSProp and
Adam on the validation set, we compare them to the base-
line on their test set accuracies, as plotted in 2(c). Adam
clearly comes out ahead, reaching a high accuracy (in the
82.5 — 83% range) on the test set after just 50 epochs, while
the baseline takes 100 epochs to reach a similar perfor-
mance. RMSProp never quite reaches this level, peaking at
82.2% accuracy.

These results suggest that Adam is a worthwhile improve-
ment over our SGD baseline, especially in terms of training
speed: using Adam enables us to reach the same accuracy
as SGD at a training budget of half as many epochs.

5. Cosine Annealing Learning Rate
Scheduler

So far, we’ve explored using different learning rules
(namely, RMSProp and Adam) to improve the accuracy and
training speed of a neural network classifier on EMNIST
data. Another approach to improving learning is to adjust
the learning rate—how much of a “bump” the gradients
can give to the weights in each mini batch iteration—over
time. The intuition is that, as we approach a minimum in
the cost function, we should slow down to avoid constantly
overshooting it.

As presented by (Loshchilov & Hutter, 2017), cosine an-
nealing is such an algorithm that works by periodically
quickly decreasing the learning rate and then slowly in-
creasing it again. It calculates the learning rate n7 according
to Equation 6, where i is the index of the current epoch.

=1, + 0500, — 10 (1 + cos (1T /T7)) — (6)

Cosine annealing using the following hyperparameters,
some of which can be found in Equation 6:

® 7Jnin: the minimum learning rate

® may: the maximum learning rate, which is also the
starting learning rate

e T;: the total iterations per period, after which we
restart by quickly decreasing the learning rate

e T, a factor by which we increase or decrease T;
after each restart

e d: afactor by which we decrease 1,,,,, after each restart

We apply the final two hyperparameters outside Equation 6,
whenever a restart occurs (e.g. after T; iterations pass after
the previous restart).

2This could be an indication that we should have tried more
diverse settings for 8, and 3,; due to time constraints, however,
we did not attempt these. Training 36 models on a laptop takes
quite a bit of time.
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After implementing the cosine annealing learning rate
scheduler to pass unit tests, we ran six experiments: the
following three learning schedules, applied to both the SGD
and Adam learning rules, all trained for 100 epochs.

1. Keeping the learning rate constant

2. Adjusting the learning rate using cosine annealing
without restarts

3. Adjusting the learning rate using cosine annealing
with restart

For each of these, we keep the learning rule hyperparame-
ters constant (e.g. 81 = 0.9, 8> = 0.9999 and € = 1073 for
Adam). For the each learning rule, we set the maximum
(starting) learning rate where they performed best on previ-
ous experiments: 177,,,; = 0.01 for SGD; 17,4, = 0.0001 for
Adam. Finally, we keep the cosine annealing scheduler’s
hyperparameter 7,,;, constant at 0.00001. Experiment 1, the
baseline, requires settings that we have previously run in
other tasks. No need to re-run them!

Experiment 2, cosine annealing without restarts, requires
setting the remaining hyperparameters as follows: 7; = 100
(preventing a restart before the end of training) and 7 ,,,;; =
1 (irrelevant since there are no restarts).

Experiment 3, cosine annealing with restarts, requires set-
ting the remaining hyperparameters as follows: T; = 25
(causing a restart after 25 epochs) and 7, = 3 (causing
the second restart to be 75 epochs later, at epoch 100, which
is the end of training).
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(a) Baseline (constant learning rate schedule), cosine annealing,
and cosine annealing test set accuracies, grouped by learning rule;
for the latter, a restart can clearly be observed at the 25th epoch.
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(b) In this zoomed-in view of training set accuracy during the last
30 training epochs on the Adam learning rule, it is clear that the
baseline (without cooled-down learning rate) is relatively unstable.

Figure 3: Comparison of a constant learning rate schedule, a
cosine annealing schedule, and a cosine annealing schedule
with restarts.

The results of these experiments are plotted in Figure 3(a),
grouped by learning rule, which clearly shows a restart at
25 epochs for cosine annealing with restarts on both SGD
and Adam.

Accuracy-wise, Figure 3(b) is more interesting: it shows
that, on Adam, both versions of cosine annealing are more
stable towards the end of training than the baseline. Fur-
thermore, it shows that cosine annealing without restarts
on Adam has the best stable accuracy so far, stabilizing
between 83.1% and 83.2%".

From these experiments, we can see that cosine annealing
without restarts is the best-performing model tested so far.

6. Regularization and weight decay with
Adam

In (Loshchilov & Hutter, 2017), the authors argue that L2
regularization is not particularly effective for algorithms
other than SGD because of the interaction between the
learning rate parameter and the regularization constant. In-
stead, they argue, we should explicitly make weight decay
part of the learning rule.
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(a) The Adam learning rule with weight decay has the best accuracy
at the default weight decay setting of 0.00001 (orange line).
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(c) On best validation set performance hyperparameter settings, L2
regularization outperforms weight decay on the test set.

Figure 4: Experiments with and comparison of the Adam
learning rule with weight decay and L2 regularization.

To test these claims, we implement the Adam learning
rule with weight decay to pass unit tests, and experiment
on weight decay and L2 regularization. Across these ex-
periments, the following are constant: we use the Adam
learning rule with 8; = 0.9, 8, = 0.9999 and € = 1078;
learning rate 0.0001; three hidden layers with 100 ReLU

3Even though the baseline does achieve this accuracy, it does
so much more erratically.
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Model Hyperparameters Test Set Accuracy
1 Stochastic Gradient Descent LR =107 0.831
2  RMSProp LR=10"% e=107%; B, = 0.99 0.823
3 Adam LR=10"% e=10"%; B8, = 0.9; 8> = 0.9999 0.827
4  Cosine annealing (no restarts) Nin = 1075 Nax = 1074 Ty = 100; Tppr = 1 0.831
5 Cosine annealing (with restarts)  7,uin = 107 ypax = 1074 Ti = 25; Tpur = 3 0.829
7  Weight decay LR = 107*; weight decay = 107> 0.831
6 L2 regularization LR = 10*; L2 coefficient = 1073 0.840

Table 1: Comparison of final epoch accuracy on the test set of all models at the best settings found during validation set
experimentation. All models have three hidden layers with 100 ReLU units each. Models 4 through 8 all use the Adam

learning rule with €, 8; and 3, are set to model 3 settings.

units each; and 100 training epochs.

Experiment 1 involves varying the weight decay hyper-
parameter for the Adam learning rule with weight decay.
We vary this parameter slightly around the default, rec-
ommended value, setting it at 0.000005, 0.00001 (default
setting), and 0.00005.

Experiment 2 involves varying the L2 coefficient hyper-
parameter for L2 regularization. We vary this parameter
slightly around the settings from lab 5, setting it at 0.00001,
0.0001, and 0.001.

The results of experiment 1 are plotted in Figure 4(a), which
shows that the Adam learnig rule with weight decay per-
forms best on the validation set with the default weight
decay setting of 0.00001. The results of experiment 2 are
plotted in Figure 4(b), which shows that L2 regularization
has the best accuracy with L2 coefficient 0.001.

Comparing these best settings for each model on the test set,
as plotted in Figure 4(c), we can see that L2 regularization
outperforms Adam with weight decay. This conclusion
contradicts with the literature, since (Loshchilov & Hutter,
2017) claim Adam with weight decay fixes the aspects
of Adam with L2 regularization that are ineffective; this
suggests that there are better hyperparameter settings for
the Adam learning rule with weight decay that we did not
find in experimentation®.

7. Conclusions

Through on the baseline described in Section 3 and the
experiments described in Sections 4, 5 and 6, we found
the best hyperparameter settings for six different models:
stochastic gradient descent; RMSProp; Adam; cosine an-
nealing on Adam (without restarts); cosine annealing on
Adam (with restarts); weight decay on Adam; and L2 regu-
larization on adam. These best hyperparameters, along with
the corresponding model’s final-epoch test set accuracy, are
reported in Table 1.

The results in Table 1 show that, at the hyperparameters we

“Because tweaking hyperparameters after seeing a model’s
performance on the test set is bad practice, we did not go back
and try other hyperparameters for the Adam learning rule with
weight decay.

found during experimentation, only the L2 regularization
model improved over the baseline significantly in terms
of final test set accuracy. This is surprising because the
literature suggests that the weight decay model should be
best; this indicates that we probably did not find the best
hyperparameters for weight decay during experimentation.

The table does not, however, give us insight into learning
curves. As Figure 2(c) shows, models that use the Adam
learning rule reach good accuracy faster than models with
RMSProp or SGD do. Overall, this is an interesting conclu-
sion and a good motivation to use the Adam learning rule
when training models.

For future work, it would be good to further explore the hy-
perparameter space for the weight decay model: since the
literature (Loshchilov & Hutter, 2017) suggests it should
perform better than L2 regularization and it performs about
1% worse on our experiments, there is room for improve-
ment here.

References

Cohen, Gregory, Afshar, Saeed, Tapson, Jonathan, and
van Schaik, André. Emnist: an extension of mnist to
handwritten letters. arXiv preprint arXiv:1702.05373,
2017.

Kingma, Diederik P and Ba, Jimmy. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Loshchilov, Ilya and Hutter, Frank. Fixing weight decay reg-
ularization in Adam. arXiv preprint arXiv:1711.05101,
2017. URL https://arxiv.org/abs/1711.05101.

Tieleman, Tijmen and Hinton, Geoffrey. Lecture 6.5-
rmsprop: Divide the gradient by a running average of
its recent magnitude. COURSERA: Neural networks for
machine learning, 4(2):26-31, 2012.


https://arxiv.org/abs/1711.05101

