
MLP Coursework 2: Exploring Convolutional Networks

Leon Overweel

Abstract
In this coursework, we implement the convolutional
and max pooling layers of a convolutional neural
network. We also explore different techniques for
broadening the context of a unit in such a network,
through the character classification task on the EM-
NIST dataset. Specifically, we experiment with
changing the architecture of the network in terms of
kernels per layer (constant per layer, increasing with
network depth, and decreasing with network depth)
across context broadening techniques including max
pooling, average pooling, strided convolutions, and
dilated convolutions with three different dilations-per-
layer settings. We discover that an equal number of
kernels per layer yields the best accuracy all other
settings equal, but that models that increase their
number of kernels per layer perform better at small
scales and small training budgets. We also discover
that, at lower dilation settings, all kernels-per-layer ar-
chitectures perform better than their default-dilation
equivalents.

1. Introduction
In recent years, artificial intelligence systems have become an
increasingly important part of software and workflows across
many industries. Such systems work by analyzing many exam-
ple data points to attempt to “learn” fundamental properties of
the data, which they can later apply to make predictions about
previously unseen data (s1837379, 2018).

A common approach for leaning such properties for image data
is to use convolutional neural networks (LeCun et al., 1998).
Rather than fully connecting each input to each output in a layer
as in standard deep neural networks, convolutional nets employ
kernels that are passed over the previous layer, enabling them to
recognize features independent of their location. The size and
complexity of the features that a kernel can recognize depend
on the amount of context it can process. This in turn depends
on the size of the kernel and the depth at which the kernel is
used. In this paper, we explore additional techniques to increase
context: pooling layers, striding and dilation. Specifically, we
investigate how changing the number of kernels or feature maps
per layer affects network performance in terms of accuracy and
training time across different context broadening techniques
and scales.

For our investigation, we use the handwritten character classi-
fication dataset EMNIST, which is “a set of handwritten char-
acter digits derived from the NIST Special Database 19 and
converted to a 28x28 pixel image format” (Cohen et al., 2017).
With 26 upercase and lowercase letters and 10 digits, EMNIST
has 62 classes. We use a version of the dataset that merges

0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0

I

∗

1 0 1
0 1 0
1 0 1

K

=

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

I ∗K

1 0 1
0 1 0
1 0 1

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Figure 1. A convolution of a 3 × 3 kernel K over image I, resulting in
feature map I ∗ K. Illustration by (Velickovic, 2016).

letters whose upper- and lowercase versions are hard to distin-
guish at a normalized scale (such as C, I and M), leaving 47
classes. EMNIST has a total of 131, 600 examples, which we
split into 100, 000 data points (76%) for training, 15, 800 (12%)
for validation, and 15, 800 (12%) for testing (s1837379, 2018).

The rest of this paper is structured as follows. In Section 2, we
introduce convolutional layers (Section 2.1) and max pooling
layers (Section 2.2) and describe a few aspects of our imple-
mentation of these layers in the MLP framework; in Section
3, we introduce the concept of context for convolutional neu-
ral networks and use the literature to describe the theoretical
interaction of pooling layers, striding, and dilation; we also
introduce our research questions (Section 3.4). In Section 4, we
introduce our experimental setup. In Section 5, we discuss our
experimental results. Finally, in Section 6, we conclude.

2. Implementing convolutional networks
Fully-connected neural networks trained with back-propagation
are a popular model for machine learning because they offer a
great deal of flexibility in what kind of different functions they
can learn that map input data to output data. However, they do
not work particularly well for images, the type of input data that
we are interested in, because they have no concept of locality:
a feature in an image (such as the end of a line) may appear
in many locations but a fully-connected neural network is not
equipped to model these occurrences in a single, abstracted
way, which leads to modeling and computational inefficiencies
(LeCun et al., 1998).

2.1. Convolutional Layers

Convolutional layers in neural networks solve this locality prob-
lem by using feature detectors (“kernels”) that are passed over
the image to produce feature maps with hidden units that have
local receptive fields (LeCun et al., 1998), as illustrated in Fig-
ure 1. As an added benefit, since the kernel’s weights are shared
between each input location, the number of parameters to train



MLP Coursework 2 (Leon Overweel)

Figure 2. A max pool operation with filter size 2 × 2, which looks
at a group of four neighboring activations and propagates only the
highest-value one. In this example, a 2× 2 kernel passed over the right
layer has a receptive field of 4 × 4 on the left layer. Illustration by
(Karpathy, 2015b).

is vastly smaller than it would be for a fully-connected network.

Typically, a number of different kernels will be passed over the
same input image to produce different feature maps: for the
first layer of a handwritten character recognition network, these
may be detectors for different orientations of edges and line
endings (LeCun et al., 1998). To keep the image size the same
from layer to layer, we may employ padding, which involves
adding a border of k−1

2 pixels around the original image, where
k is the kernel size.

2.1.1. Implementation

We implement convolutional layers in the MLP framework
as follows. We choose to use the approach using SciPy’s
convolve2d method over the im2col serialization method.
The latter is faster because it uses fewer, larger matrix multi-
plications, but since we are building a naive CPU-based im-
plementation, neither method will be anywhere near as fast as
optimized frameworks anyway. We therefore prefer the more
intuitive convolve2d method. To handle bad inputs, we also
add assertions to check that...

• all channel counts and layer and kernel sizes are integers,
and

• the kernel is not larger than the input.

We do not implement caching on the convolutional layer.

2.2. Max Pooling Layer

As we progress beyond the first convolutional layer, we want to
start to detect larger features in our image: instead of looking
for just line parts and endings, for example, we’re interested
in how those lines fit together. To do this, we must extend the
size of the piece of the image that the kernel in a hidden layer
reasons about, called the “receptive field”.

Instead of the obvious solutions of increasing the size of the
kernel itself or adding more layers to the network, each of
which would increase the receptive field but could also could
adversely affect the location invariance and/or generalizability
of the network (Luo et al., 2016), we can employ a technique
called “pooling”, as illustrated in Figure 2. The figure illustrates
max pooling, where the kernel only passes on the maximum
value of the values it sees. Other functions, such as averaging,
are also possible. According to the literature, max pooling is

Figure 3. Stride demonstration with a kernel of size 3 (top right, green)
being passed over a one-dimensional image of size 7 (gray). At stride
1 (left), the kernel is passed over every pixel (except the two edges)
and produces an output of size 5; at stride 2 (right), the kernel is passed
over every other pixel (except the two edges) and produces an output
of size 3. Illustration by (Karpathy, 2015c).

especially well-suited to the separation of sparse binary features,
and the size of the pooling kernel should increase as the number
of feature maps per layer increases (Boureau et al., 2010).

Pooling also helps decrease computational complexity, by re-
ducing the size of the next convolutional layer quadratically
by pooling filter size. Although pooling has been successfully
employed to increase the accuracy of convolutional neural net-
works ((LeCun et al., 1998)), more recent literature suggests
that pooling will be employed less in the future, in favor of other
techniques to increase a model’s context (Karpathy, 2015a); see
Section 3 for examples of such techniques.

2.2.1. Implementation

We implement max pooling layers in the MLP framework as
follows. As before, we use conv2d. We implement caching by
saving the index of each maximum on the forward pass. Then,
on the backward pass, we can simply create a zero matrix and
iterate over the cache to fill in the gradients at the maximum
indices. Besides being more computationally efficient, it also
makes the implementation of back propagation quite simple.
To handle bad inputs, we also add assertions to check that...
• the input size, kernel size, and stride are integers,
• the size and stride are not larger than the input, and
• the kernel will cover the entire image: input_size−size

mod stride = 0.

3. Context in convolutional networks
In the rest of this report, we explore different modifications to
convolutional neural network architectures that can be used to
improve the network’s concept of context. This is also known
as the receptive field or field of view that a unit on a particular
layer of the network has of the original image (Luo et al., 2016).
A network can reason about context in several ways, including
pooling layers (see Section 2.2), striding, and dilation1. We
describe the latter two in more detail here.

3.1. Stride

The stride affects the way in which we pass the kernel over
the image. The larger the stride, the more pixels the center of
the kernel skips between positions, and the larger the receptive
field or context of the output.

Intuitively, we can see this in Figure 3. Imagine a secondary
kernel of size 2 being passed over the output of the convolution

1Network depth and kernel size also contribute to a unit’s field of
view (Luo et al., 2016), but we do not focus on these in this work.



MLP Coursework 2 (Leon Overweel)

Figure 4. Kernel shapes at different dilation settings. Green pixels
are captured by the kernel, while white pixels are not considered. At
dilation 1, the kernel is the same as a non-dilated kernel. At higher
dilations, the receptive field of the kernel increases (from 3 × 3 at
dilation 1 to 9 × 9 at dilation 4) while the number of parameters stays
constant (at 9). Illustration by (Antoniou et al., 2018).

in Figure 3 (in yellow), starting at the first two pixels on the
left. For the left output, which was convolved with a stride of
2, its first two pixels were constructed from pixels 1 through 3
(with values 0, 1, 2) and 2 through 4 (1, 2,−1) of the original
image (in gray); this makes the receptive field on the original
image of secondary kernel 4: it can detect features of at most
size 4. For the right output, its first two pixels were constructed
from pixels 1 through 3 (0, 1, 2) and 3 through 5 (2,−1, 1); this
makes its receptive field 5: it can detect larger features than the
previous configuration.

On top of increasing the receptive field of the next layer, a
higher stride will also decrease the size of that layer and the re-
duce computational load of processing that layer. It is common
practice to only use a stride greater than 1 on pooling layers and
keep the stride at 1 for convolutional layers (Karpathy, 2015a).

3.2. Dilation

Another approach to increasing the context of a convolutional
layer is to use a dilated kernel, as illustrated in Figure 4. A di-
lated convolution is similar to the algorithme à trous algorithm,
except that it is constructed by adjusting the convolution opera-
tor instead of the the naive (and inefficient) approach of simply
creating a larger filter padded with zeros where the white pixels
are in Figure 4 to create the effect of a dilation (Yu & Koltun,
2015).

The benefit of using dilation as expansion technique is that (with
appropriate padding around the source layer), we can increase
our receptive field without decreasing resolution and therefore
plug dilated convolutions into existing architectures easily. This
allows us to learn higher-order features without decreasing
dimensionality (Antoniou et al., 2018). However, not reducing
resolution also means that we do not get the computational
benefit of decreasing the size of our layers as we progress to
deeper layers.

3.3. Combining Pooling, Stride, and Dilation

Although all these dimensionality reduction techniques affect
the receptive field, they are not mutually exclusive. For ex-
ample, we can use different strides for convolutional layers,
pooling layers, and dilated convolution layers; for each of these,
we are still passing a kernel over an image or a hidden layer,
and the amount by which we move the kernel on each step is a
variable to experiment with.

Of course, we must adjust these hyperparameters with care
in respect to each other. For example, if we apply a dilated
convolution with a stride equal to the dilation (and greater than
1), we are essentially subsampling the image: for dilation 2 and
stride 2 on a 3 × 3 kernel, for example, the kernel would only
be looking at pixels that are on both odd rows and odd columns,
and completely disregarding all pixels whose row or column is
even!

3.4. Research Question

Many seminal convolutional neural network architectures that
employ forms of dimensionality reduction also vary the number
of kernels (or feature maps) that each layer has: LeNet-5 has
two convolutional layers with 6 and 16 kernels per layer (LeCun
et al., 1998); and AlexNet has five convolutional layers with
48, 128, 128, 192, and 192 kernels per layer (Krizhevsky et al.,
2012). Therefore we ask the following question:

Q1: For different dimensionality reduction types, how does
changing the network architecture in terms of number of kernels
/ feature maps per layer affect the network’s performance in
terms of accuracy and speed? Is it better to increase the number
of feature maps as we progress to further layers, decrease it,
or keep it the same? We report our experiments to answer
this question in Section 4.1. Based on the results of these
experiments, we investigate this question in more depth for
dilated convolutions with the following question:

Q2: How do different architectures for dilations per layer and
kernels per layer affect the network’s performance in terms
of speed and accuracy? Since our images are small, would
lower dilations work better than the default 2, 3, 4, 5 dilations
per layer?

4. Experiments
Both research questions Q1 and Q2 deal with varying the num-
ber of kernels / feature maps per layer. We identify three ways
to vary this architecture:

• Group A: Use a constant amount of kernels on each
layer. Since this is the default in the MLP framework, this
will serve as our baseline.
• Group B: Use an increasing amount of filters per layer

as we progress to deeper layers. Intuitively, this approach
makes sense to use with expanding contexts: as we get
deeper in the network and our receptive fields are larger,
we will want to identify more complex features, so having
more kernels tuned to pick up different complex features
on deeper layers makes sense.

• Group C: Use a decreasing amount of filters per layer as
we progress to deeper layers. In computer science (and in
life in general), testing the for the opposite of our intuition
is always a good idea.

For each of these three settings, we must also consider scale:
a group may, for example, perform best in terms of accuracy
at a large scale (interesting if we have a large training budget)
while another might work best in terms of time on a small scale
(interesting if we have a small training budget). We experiment
on the following kernels-per-layer architectures:

• For Group A, we try five constant kernel counts of 4, 8,



MLP Coursework 2 (Leon Overweel)

Max Pooling Average Pooling Strided Conv. Dilated Conv.
Kernels/Layer ID Acc s/Ep ID Acc s/Ep ID Acc s/Ep ID Acc s/Ep
4, 4, 4, 4 1 0.746 5.1 2 0.781 5.0 3 0.815 7.3 4 0.813 11.1
8, 8, 8, 8 5 0.850 5.4 6 0.851 5.4 7 0.869 7.7 8 0.866 13.6
16, 16, 16, 16 9 0.875 6.3 10 0.882 6.4 11 0.878 8.5 12 0.883 18.2
32, 32, 32, 32 13 0.886 8.9 14 0.888 9.1 15 0.882 11.2 16 0.887 25.7
64, 64, 64, 64 17 0.884 17.1 18 0.889 17.6 19 0.887 20.5 20 0.891 61.7
4, 8, 16, 32 21 0.876 5.4 22 0.878 5.4 23 0.870 7.7 24 0.884 15.0
8, 16, 32, 64 25 0.883 6.8 26 0.884 6.8 27 0.879 9.3 28 0.885 22.8
16, 32, 64, 128 29 0.885 10.4 30 0.886 10.4 31 0.881 15.0 32 0.890 70.1
32, 16, 8, 4 33 0.835 7.1 34 0.839 7.3 35 0.860 9.4 36 0.867 18.0
64, 32, 16, 8 37 0.873 11.0 38 0.881 11.4 39 0.875 14.8 40 0.881 34.6
128, 64, 32, 16 41 0.881 25.2 42 0.888 25.7 43 0.880 31.1 44 0.890 85.5

Table 1. Highest validation set accuracy (Acc) achieved and the average training time per epoch in seconds (s/Ep) for each combination of
dimensionality reduction type and number of feature maps per convolutional layer, where models are uniquely identified by their IDs. Best
accuracies are highlighted for each dimensionality reduction type. Horizontal lines separate groups A, B and C.

16, 32, and 64 per layer2.
• For Group B, we increase kernel counts on three different

scales: 4, 8, 16, 32; 8, 16, 32, 64; and 16, 32, 64, 128.
• For Group C, we decrease kernel counts on three different

scales: 128, 64, 32, 16; 64, 32, 16, 8; and 32, 16, 8, 4.

We use these same groups and scales of kernels per layer for all
experiments across Q1 and Q2 experiments. Unless otherwise
specified, we use a seed of 424242 to train our models, batch
size 100, and the PyTorch default of uniform random weights/
biases initialization between ± 1

√
Πk

, where k are kernel sizes.

4.1. Q1: Kernels Per Layer

For each of architectures, we investigate how it performs in
terms of validation set accuracy and average epoch training time
across different context techniques / dimensionality reduction
types. For each of these types, unless otherwise specified,
we use the default MLP framework settings of kernel size 3,
padding 1, stride 1, dilation 1. The types we test for are Max
Pooling, Average Pooling, Strided Convolution (with stride
2), and Dilated Convolutions (dilation i + 2, where i is the
zero-indexed index of the layer).

In total, this yields 11 kernels-per-layer architectures times 4
dimensionality reduction types equals 44 different models to
train for our first set of experiments. We label them as models 1
- 44. The results of running these experiments are summarized
in Table 1 and Figure 5; we discuss these results in Section 5.1.

4.2. Q2: Dilations

In our experiments for Q1, all kernels per layer architectures
performed best on Dilated convolution (see Table 1 and Section
5.1), so we decide to investigate dilations further. Again, we
use MLP framework default settings of stride 1, padding 1 and
kernel size 3. We try the following settings for dilations, with
the first number corresponding to the dilation for the first layer,
etc.:

• 2, 3, 4, 5: This is the default; so we already ran these set-
tings in models 4, 8, 12, ..., 44.

2Initial experiments showed that training four full layers of 128
kernels would take too long.

• 1, 2, 3, 1: This setting is inspired by (Yu & Koltun, 2015),
which first increases and then decreases dilation per layer.
• 1, 2, 3, 4: This setting is inspired by the default, but scaled

down because, after all, we are dealing with relatively
small 28 × 28 pixel images.

In total, this yields 11 kernels-per-layer architectures times 2
additional dilations settings equals 22 models to train for our
second set of experiments. We label these as models 45 - 66.
The results of these experiments are summarized in Table 2 and
Figure 5; we discuss these results in Section 5.2.

4.3. Final Comparison

For our final model comparison, we calculate and report test
scores and error bars for the few best and most interesting
models. This includes models 13, 18, 19 and 20, which had
the best accuracies in our first set of experiments; models 54
and 59, which had the best accuracies for the second set; and
model 55, which scored surprisingly high for its kernel counts
and training time.

We run each model three times, with seeds 424242, 87654 and
34958. We calculate error bars on accuracy as the mean of
these runs ± the standard deviation. The results of these runs
are in Table 3; we discuss the results in Section 5.3.

5. Discussion
5.1. Q1: Kernels Per Layer

Table 1 and the first four columns of Figure 5 provide two views
on the 44 experiments we ran to answer Q1. The table allows
us to compare models in terms of their highest validation set
score vs. their training time, while the graph shows us where
different models underfit or start to underfit. We present our
conclusions from each in turn.

First, we can see from the highlighted accuracy best scores in
Table 1 that Group A (the baseline with equal kernel counts per
layer) slightly outperforms Groups B and C in terms of highest
overall validation set accuracy. For average pooling, strided
convolutions, and dilated convolutions, the models with 64
kernels per layer perform best (models 18, 19, and 20, respec-
tively); for max pooling, the model with 32 kernels per layer



MLP Coursework 2 (Leon Overweel)

Max Pooling

0.7

0.8

0.9

1.0

0.746

1
Average Pooling

0.781

2
Strided Convolutions

0.815

3
Dilated Convolutions

0.813

4
Dilation 1, 2, 3, 1

0.826

45
Dilation 1, 2, 3, 4

4,
 4

, 4
, 4

0.820

46

0.7

0.8

0.9

1.0

0.850
5

0.851

6

0.869

7

0.866

8

0.876

47

8,
 8

, 8
, 8

0.879

48

0.7

0.8

0.9

1.0

0.875

9

0.882

10

0.878

11

0.883

12

0.889

49

16
, 1

6,
 1

6,
 1

6

0.889

50

0.7

0.8

0.9

1.0

0.886

13

0.888

14

0.882

15

0.887

16

0.896

51

32
, 3

2,
 3

2,
 3

2

0.892

52

0.7

0.8

0.9

1.0

0.884

17

0.889

18

0.887

19

0.891

20

0.892

53

64
, 6

4,
 6

4,
 6

4

0.897

54

0.7

0.8

0.9

1.0

0.876

21

0.878

22

0.870

23

0.884

24

0.893

55

4,
 8

, 1
6,

 3
2

0.890

56

0.7

0.8

0.9

1.0

0.883

25

0.884

26

0.879

27

0.885

28

0.894

57

8,
 1

6,
 3

2,
 6

4

0.891

58

0.7

0.8

0.9

1.0

0.885

29

0.886

30

0.881

31

0.890

32

0.895

59

16
, 3

2,
 6

4,
 1

28

0.892

60

0.7

0.8

0.9

1.0

0.835

33

0.839

34

0.860

35

0.867

36

0.866

61
32

, 1
6,

 8
, 4

0.866

62

0.7

0.8

0.9

1.0

0.873

37

0.881

38

0.875

39

0.881

40

0.884

63

64
, 3

2,
 1

6,
 8

0.885

64

0 50 100
0.7

0.8

0.9

1.0

0.881

41

0 50 100

0.888

42

0 50 100

0.880

43

0 50 100

0.890

44

0 50 100

0.891

65

0 50 100

12
8,

 6
4,

 3
2,

 1
6

0.893

66

0.04 0.02 0.00 0.02 0.04
Epoch

0.04

0.02

0.00

0.02

0.04

Ac
cu

ra
cy

Training Set Accuracy Validation Set Accuracy

Figure 5. Training (blue) and validation (red) curves for models 1 - 66, resulting from the experiments described in Sections 4.1 (first four
columns) and 4.2 (last two columns). The black number at the top left of each graph indicates the model ID. The red line indicates the epoch that
reached the highest validation score; the red number indicates the highest validation score. Labels at the top indicate dimensionality reduction
type; labels on the right indicate the architecture in terms of kernels per layer.



MLP Coursework 2 (Leon Overweel)

Dilation 1, 2, 3, 1 Dilation 1, 2, 3, 4
Kernels/Layer ID Acc s/Ep ID Acc s/Ep
4, 4, 4, 4 45 0.826 15.0 46 0.820 14.4
8, 8, 8, 8 47 0.876 18.2 48 0.879 17.6
16, 16, 16, 16 49 0.889 23.9 50 0.889 23.1
32, 32, 32, 32 51 0.896 33.3 52 0.892 31.8
64, 64, 64, 64 53 0.892 76.9 54 0.897 73.6
4, 8, 16, 32 55 0.893 22.7 56 0.890 21.1
8, 16, 32, 64 57 0.894 35.5 58 0.891 32.3
16, 32, 64, 128 59 0.895 77.0 60 0.892 67.9
32, 16, 8, 4 61 0.866 21.9 62 0.866 21.1
64, 32, 16, 8 63 0.884 33.7 64 0.885 32.7
128, 64, 32, 16 65 0.891 86.3 66 0.893 27.9

Table 2. Highest validation set accuracy (Acc) achieved and the aver-
age training time per epoch in seconds (s/Ep) for each combination of
dilation setting per layer and number of feature maps per convolutional
layer, where models are uniquely identified by their IDs. Best accura-
cies are highlighted for each dimensionality reduction type. Horizontal
lines separate groups A, B and C.

performs best (model 13). So, in terms of accuracy, changing
the number of kernel maps to either be increasing or decreasing
from layer to layer (at least in the configurations we tried) does
not improve network performance.

More interesting results emerge if we consider accuracy in
relation to training time. We can compare the models that
take up to 5.5 seconds per epoch to train, for example. Here,
Group A models 1, 2, 5 and 6 all have much worse accuracies
than Group B models 21 and 22. We can see similar patterns
in Table 1 for the relatively small models trained using other
dimensionality reduction types as well. So, on constrained
training budgets, an architecture of increasing the number of
kernels per layer improves training accuracy. Another timing-
related observation is that dilated convolutions are relatively
slow to train compared to other dimensionality reduction types,
and even more so for Groups B and C than for Group A.

Finally, Table 1 also confirms our intuition that increasing ker-
nels per layer performs better than decreasing kernels per layer:
across the board Group C models train more slowly when com-
pared to equivalently-size Group B models or Group A models
with similar training times; they also generally result in rela-
tively worse accuracies.

We can also gain some insight from the graphs in Figure 5. First,
the common rule of thumb that models with more parameters
overfit more on the training set holds. The opposite holds as
well: the smaller models (1 - 8, 20 - 24, and 33 - 37) appear
to underfit and would probably get better accuracies if they
were trained longer (whenever the red line in Figure 5 hugs the
right axis of a graph, this indicates that the model underfitted).
Another observation from this figure is that, irrespective of
kernel count per layer, both strided and dilated convolutions
overfit faster than max and average pooling.

5.2. Q2: Kernels and Dilations Per Layer

Table 2 and the last two columns of Figure 5 show the results
of the experiments we ran to answer Q2.

First, we can see a pronounced improvement: for both dila-

ID Accuracy
13 0.875 ± 0.0016
18 0.881 ± 0.0010
19 0.875 ± 0.0011
20 0.882 ± 0.0016
54 0.884 ± 0.0010
55 0.882 ± 0.0027
59 0.889 ± 0.0020

Table 3. Test set accuracies of select models with error bars. Error
bars are computed as the mean of running with three different ± the
standard deviation of these three runs.

tions 1, 2, 3, 1 and 1, 2, 3, 4, every single kernels-per-layer ar-
chitecture gets to a better best validation set accuracy score
than the equivalent models trained with max pooling, average
pooling, strided convolutions, or the default 2, 3, 4, 5 dilated
convolutions. The best model, 55, has the highest validation set
accuracy of 0.897. They also, however, all take much longer to
train.

If we examine the relatively small models again, we can see
the improvement is especially large: model 55, with 4, 8, 16, 32
kernels per layer trained with dilations 1, 2, 3, 1, for example,
outperforms the best model (20) from the first set of experi-
ments in terms of accuracy (0.893 vs 0.891) and training time
(22.7 vs 61.7 s/epoch).

5.3. Final Comparison

For our final model comparison, as described in Section 4.3, we
compute error bars on the test set accuracy of a few interesting
models. Across the board, the test set accuracies are about 1%
worse than the validation set accuracies, which could indicate
that we slightly overfitted our architecture and hyperparameters
on the validation set.

However, the general trend we discovered in our Q2 experi-
ments holds: the models with dilations 1, 2, 3, 1 and 1, 2, 3, 4
outperform the model with the default dilations 2, 3, 4, 5. Also,
model 55 once again performed similarly to bigger-scale mod-
els, showing that a small model with increasing kernels per
layer and dilations 1, 2, 3, 1 indeed outperforms the baselines.

6. Conclusions
In this work, we experimented with changing the number of
kernels per layer in four-layer convolutional neural networks
across different context broadening techniques, including max
pooling, average pooling, strided convolutions, and dilated
convolutions with three different dilations-per-layer settings.
From research question Q1, we discovered that, although the
baseline of having an equal number of kernels per layer yields
the highest overall accuracy, models that increase their number
of kernels per layer with layer depth perform better at small
scales: with relatively short training time and a relatively low
number of parameters to train, these models score higher in
accuracy than models of similar scale. From research question
Q2, we discovered that smaller dilations perform better than
the default dilations in the MLP network.



MLP Coursework 2 (Leon Overweel)

References
Antoniou, Antreas, Słowik, Agnieszka, Crowley, Elliot J, and

Storkey, Amos. Dilated densenets for relational reasoning.
arXiv preprint arXiv:1811.00410, 2018.

Boureau, Y-Lan, Ponce, Jean, and LeCun, Yann. A theoretical
analysis of feature pooling in visual recognition. In Pro-
ceedings of the 27th international conference on machine
learning (ICML-10), pp. 111–118, 2010.

Cohen, Gregory, Afshar, Saeed, Tapson, Jonathan, and van
Schaik, André. Emnist: an extension of mnist to handwritten
letters. arXiv preprint arXiv:1702.05373, 2017.

Karpathy, Andrej. Convolutional Neural Networks, 2015a.
URL http://cs231n.github.io/convolutional-networks/. [On-
line; accessed November 21, 2018].

Karpathy, Andrej. Max Pooling (illustration), 2015b. URL
http://cs231n.github.io/convolutional-networks/. [Online;
accessed November 19, 2018].

Karpathy, Andrej. Stride (illustration), 2015c. URL http://
cs231n.github.io/convolutional-networks/. [Online; accessed
November 21, 2018].

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E. Ima-
genet classification with deep convolutional neural networks.
In Advances in neural information processing systems, pp.
1097–1105, 2012.

LeCun, Yann, Bottou, Léon, Bengio, Yoshua, and Haffner,
Patrick. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Luo, Wenjie, Li, Yujia, Urtasun, Raquel, and Zemel, Richard.
Understanding the effective receptive field in deep convolu-
tional neural networks. In Advances in neural information
processing systems, pp. 4898–4906, 2016.

s1837379. MLP Coursework 1: Learning Algorithms and
Regularization, 2018. [Accessed November 22, 2018].

Velickovic, Petar. 2D Convolution (illustration), 2016.
URL https://github.com/PetarV-/TikZ/tree/master/2D%
20Convolution. [Online; accessed November 18, 2018].

Yu, Fisher and Koltun, Vladlen. Multi-scale context aggregation
by dilated convolutions. arXiv preprint arXiv:1511.07122,
2015.

http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/
https://github.com/PetarV-/TikZ/tree/master/2D%20Convolution
https://github.com/PetarV-/TikZ/tree/master/2D%20Convolution

