
NLU+ Coursework 2

February 14, 2019

Question 1: Understanding the Baseline Model
Our explanatory comments:

(A) If self.bidirectional is set to True, we use a bidirectional LSTM that
processes the input sequence both forwards and backwards. In this case,
the output size also doubles to twice the hidden size. To get the output
back in the form we need, combine directions pulls the LSTM hidden
and cell state outputs out into its even and odd-indexed parts (which
correspond to the forward and backwards directions) and concatenates
them back together.
In an LSTM, the cell states serve as memory, encoding things like plurality
and gender information that can be changed using the input and forget
gates. The hidden state is calculated using the cell state and passes this
information on to the next time step1. The state of these at the final time
step are respectively outputted by nn.LSTM as final hidden states and
final cell states.

(B) The attention context vector is the product of the calculated attention
weights and the output of the encoder. The attention scores are masked
because the AttentionLayer has a fixed width, but the sentences have
variable length. The fixed sentence length is required for batching since
this puts multiple sentences into the same matrix for processing. The
excess scores are then masked away before the context vector is calculated.

(C) The attention scores are calculated by multiplying the encoder’s hidden
state by a projection matrix and transpose multiplying by the decoder’s
hidden state [2]. The projection matrix allows for each position in the in-
put sentence to be given a weight for each position in the output sentence,
which yields an alignment vector once the softmax is taken.

(D) The decoder is initialized by either retrieving an incremental state from
cache or by generating previous states. cached state is None if there is no
previous incremental state for this module instance available, usually only

1Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

1



0 10 20 30 40 50 60 70

100

101

102

103

English

0 10 20 30 40 50 60 70

100

101

102

103

Japanese

(a) Log-scale histograms of English and
Japanese sentence length distributions,
with buckets of size 1.

0 10 20 30 40 50 60 70
English

0

10

20

30

40

50

60

70

Ja
pa

ne
se

(b) Correlation between English and Japanese sen-
tence length. The green line is a linear fit of the
data and the gray line is x = y. Individual points
have a small jitter applied to visualize distribution
density.

Figure 1: Plots of sentence lengths in English and Japanese training data, for
Question 2.1.

true on the very first forward pass of the decoder. The role of input feed
is to create a new matrix of zeros that shares the shape of the target
embeddings, so it can be filled with the decoder’s predictions.

(E) The attention layer is integrated as nearly the last operation in the de-
coder’s forward pass. It uses the encoder’s output and the previous LSTM
hidden state to compute both the attention weights and the context vec-
tor, then it concatenates and puts them under a trained projection again
to form the layer outputs. Dropout is added during training to reduce
overfitting, a sensible step for a jointly-trained encoder-decoder using rel-
atively small amounts of training data.

(F) These seven lines implement a single basic iteration of training. First a
minibatch is sent through a forward pass of the model. Then, the loss is
evaluated (cross-entropy in this case), backpropagated, and the gradient
norm is clipped to avoid exploding gradients. Lastly, an optimization step
is run (Adam in this case) and accumulated gradients are zeroed for the
next iteration.

2



Question 2: Understanding the Data
1. See Figure 1 for plots. English and Japanese sentence lengths are strongly

positively correlated with a Pearson product-moment correlation coeffi-
cient of 0.768 (calculated using numpy.corrcoef). From this and the
plots, we can infer that translating between the two languages is feasible:
pairs of sentences are generally close to the same length (though Japanese
sentences are a bit longer), which reduces the amount of potential one-to-
many and many-to-one translations, simplifying the task.

2. The English training set has 93, 086 word tokens, including punctuation.
The Japanese set has 136, 899 tokens, including punctuation.

3. The English training set has 7, 040 word types. The Japanese set has
5, 558 types.

4. There are 3, 331 unique word tokens in the English set that would be
UNK’d. There are 2, 673 such tokens in the Japanese set.

5. The English training set has fewer word tokens, but relatively more word
types and unique word tokens. This means that English has a relatively
high fraction of UNK’s (3, 331/93, 086 ≈ 3.6% vs 2, 673/136, 899 ≈ 2.0%),
so it may have trouble figuring out what to do with these. Since Japanese
sentences are generally a bit longer, there will be many one-to-many trans-
lations from English to Japanese, which may make it difficult for the at-
tention to figure out correct alignments.

Question 3: Improving Decoding
1. Greedy decoding may be problematic if higher-probability words are “hid-

ing” behind lower-probability words. For example, consider two possible
translations: “the angry cyclops” (incorrect) and “the exasperated man”
(correct). If we simply do a greedy decoding, the former translation may
be selected because “angry” is a more common word than “exasperated”
which still closely relates to the original sentence, and the fact that “man”
is more likely than “cyclops” is never considered.

2. One simple way to implement beam search for NMT is the original as
follows, as proposed by [3]. Going from left to right, keep B most-likely
translations of the sequence up to the current time step (we call these
our hypotheses). Then, at the current time step, add every possible word
in the vocabulary to each of the B hypotheses. Of these new possible
translations, discard all but the B best ones. Move on to the next time
step and repeat.

3. Since the probability of a sentence is determined by multiplying the prob-
abilities of the words in the sentence, and all probabilities are ≤ 1 (but < 1

3



x1 x2 ... <EOS> 

LSTM 
Cell ... 

(Back-
wards) ... 

h1,1 h1,m

La
ye

r 1

LSTM 
Cell ... 

(Back-
wards) ... 

h2,1 h2,m

La
ye

r 2

h1,2

h2,2

Source Embedding

Encoder Bi-LSTM Attention

<start> y1 ... yk 

Target Embedding

LSTM 
Cell ... 

LSTM 
Cell ... 

LSTM 
Cell ... 

s1 s2 ... sk

[ci, si] 

Softmax 

Decoder LSTM

ci 

La
ye

r 1
La

ye
r 3

La
ye

r 2

Figure 2: Diagram of the NMT system architecture with a 2-layer encoder (bi-
directional LSTMs) and a 3-layer decoder (LSTMs). Figure adapted from [1].

in practice since the vocabulary has > 1 word), adding an additional word
to a sentence and multiplying its probability by a number < 1 will neces-
sarily decrease its probability. So, the decoder will favor short sentences.
One problem that length normalization can introduce is that it adds an-
other hyperparameter to the model which needs to be tuned and could
result in the system producing either too short or too long translations if
it is not tuned correctly.

Question 4: MOAR Layers!
1. I used the following command:

$ python t r a i n . py −−encoder−num−l a y e r s 2 −−decoder−num−
↪→ l a y e r s 3 −−save−d i r checkpo in t s moar l aye r s

2. See Figure 2. In the Encoder, the bottom two rows of each layer represent
the forward and backward pass over the input embeddings, and the top
row represents the resulting hidden states. Figure adapted from [1].

3. See Table 1 for the effect of going to a 2-layer encoder and 3-layer on
dev-set perplexity, test BLEU score and training loss. Across the board,
the new model does worse than the baseline, perhaps because there is not
enough training data to successfully train this deeper model with more

4



Model Q. Loss (Train) Perpl. (Dev) BLEU (Test)
Pretrained Baseline 2.334 22.4 7.98
MOAR Layers 4.3 2.527 26.6 5.84
Lexical 6 1.745 20.0 10.90

Table 1: Performance comparison of the different architectures. The parenthet-
ical in the header represents which part of the data that particular score was
calculated on; Q. refers to the question corresponding to the model.

parameters. Validation (dev set) loss on the MOAR Layers model is 3.28,
which is higher than the training loss, indicating that the model may be
starting to overfit on the training set, as deeper models are in general more
likely to do.

Question 6: Effects on Model Quality
See Table 1 for the lexical model’s affect on the NMT system’s performance,
which is better than the baseline across the board. Training loss is lower (1.745
compared to 2.334), which indicates that the model is better able to fit the
training data. Perplexity on the dev set is also lower (20.0 compared to 22.4),
indicating that the lexical model has more predictive power. Finally, the BLEU
score is much higher (10.90 compared to 7.98), indicating better translation
quality. All of these may be explained by the lexical model doing its intended
job: improving translations of rare words.

Question 7: Effects on Attention

ignorance is bliss . <EOS>

<unk>

<EOS>

0.0

0.2

0.4

0.6

0.8

1.0

(a) Baseline: “i’m sorry .”

ignorance is bliss . <EOS>

<unk>

<EOS>

0.0

0.2

0.4

0.6

0.8

1.0

(b) Lexical: “happy is happiness .”

Figure 3: Attention of baseline and lexical models when translating “無知は幸
福 。” with target translation “ignorance is bliss .” Word-for-word translations
from Google Translate are 無知 → ignorance, は → is, and 幸福 → happiness.

5



In general, attention in the lexical model appears more extreme: whereas at-
tention is usually relatively evenly distributed between different source words in
the baseline model, the lexical model puts more emphasis on single words when
translating. This is in line with expectations from how the lexical model should
work: we add the source embeddings weighted by the attention to the predictive
distribution, so we can expect the attention activation on those specific source
words to be higher.

This can be seen, for example, in Figure 3. In this example, the lexical model
puts much higher attention on幸福 for target word bliss than the baseline does.
Because of this, it captures the word happiness in its translation, which is the
top translation for 幸福 according to Google Translate. So, the attention looks
reasonable.

Question 8
Because of the relatively small dataset on which both the baseline and lexical
models were trained, neither produces coherent translations of long sentences.
Therefore, I focus on shorter sentences in this analysis.

1. The types of sentences that will benefit most from lexical information are
those where the target sentence has relatively uncommon words that can
easily be swapped out for other, more common words, in a way that the
sentence will stay coherent2 but that its meaning will change.

2. I have collected several sentences which provide evidence for this hypothe-
sis in Table . I also counted unique words across the different translations
to English: the reference (test set) has 1,306; the baseline has 491; and
the lexical model has 716.

3. This evidence supports my hypothesis. First, the unique word counts give
a rough indication that the baseline has a smaller vocabulary, favoring
more common words over less common ones—the lexical model has about
46% more unique words, indicating that it is less likely to fall back on
common words.

2(or, at least, the level of coherent that such a small model is capable of producing)

ID Reference Baseline Model Lexical Model
3 he is a german by origin . he is a man of great ability . he is a germany person .

14 i stopped smoking . i let my smoking at once . i stopped smoking .
50 he earns a good salary . he has a good news . he has a good salary .

Table 2: Several examples of reference translations compared to the baseline
and lexical model’s translations. ID indicates line number in test.en.

6



The sentences in Table also support my hypothesis: in sentence 14, the
baseline swaps stopped (occurs 9 times in the training data) for let (137 oc-
currences); this produces a semi-coherent sentence since let is still a verb.
Similarly, for sentence 3 the baseline swaps “german” (11 occurrences)
for “great” (70 occurrences)3; and for sentence 50 it swaps salary (5 oc-
currences) for news (43 occurrences). These examples illustrate that the
baseline favors more common, coherent-sounding words while the lexical
model is able to overcome this and favor correct translations.

References
[1] Denny Britz, Anna Goldie, Minh-Thang Luong, and Quoc Le. Massive

exploration of neural machine translation architectures. arXiv preprint
arXiv:1703.03906, 2017.

[2] Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effec-
tive approaches to attention-based neural machine translation. CoRR,
abs/1508.04025, 2015.

[3] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning
with neural networks. In Advances in neural information processing systems,
pages 3104–3112, 2014.

3The baseline’s translation here is actually 100% memorized; the exact phrase it produces
exists in the training data.

7


